

STOW: Discrete-Frame Segmentation and Tracking of Unseen Objects for Warehouse Picking Robots

7th Conference on Robot Learning (2023), Atlanta, USA

Yi Li¹, Muru Zhang¹, Markus Grotz¹, Kaichun Mo², Dieter Fox^{1,2} University of Washington, NVIDIA

Results

Mathad	Shelf		Tablet	
Method	AP@all	AP@0.5	AP@all	ł
MinVIS	6.3	21.2	0.7	
Mask2Former Video	35.0	66.1	27.7	
VITA	42.7	70.1	26.6	
STOW (Ours)	55.6	81.3	49.7	

- Comparison with STOA VIS methods
- Train on synthetic data and test on real data
- All using RN50 backbone with same number of iteration

multi	shelf		tabletop	
frame	AP@all	AP@0.5	AP@all	AP@0.5
-	51.8	78.7	44.4	68.5
✓	55.6	81.3	49.7	75.4

- Ablation study on multi-frame attention layer
- Frame attention layer can boost performance by ~5%

mathad	synthetic		real	
method	AP@all	AP@0.5	AP@all	AP@(
MinVIS	0.3	2.6	0.7	0.0
M2F-V	71.6	83.7	27.7	56.7
VITA	69.4	81.9	26.6	55.0
STOW (Ours)	74.1	89.3	49.7	75.4

- Better performance handling Sim2Real Gap
- Train on synthetic and test on synthetic and real

Real Robot Experiments	

82 trials, involving >100 objects

Method	Success Rate
UCN+SIFT	40.2%
VITA	46.3%
STOW(Ours)	74.4%

Acknowledgement

This research is funded by the UW + Amazon Science Hub as part of the project titled, "Robotic Manipulation in Densely Packed Containers." We would like to thank Dr. Michael Wolf from Amazon for valuable discussions. We further would like to thank our students Sanjar Normuradov and Soofiyan Atar for helping running robot experiments.

).5