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Abstract: Segmentation and tracking of unseen object instances in discrete
frames pose a significant challenge in dynamic industrial robotic contexts, such
as distribution warehouses. Here, robots must handle object rearrangement, in-
cluding shifting, removal, and partial occlusion by new items, and track these
items after substantial temporal gaps. The task is further complicated when robots
encounter objects not learned in their training sets, which requires the ability to
segment and track previously unseen items. Considering that continuous observa-
tion is often inaccessible in such settings, our task involves working with a discrete
set of frames separated by indefinite periods during which substantial changes to
the scene may occur. This task also translates to domestic robotic applications,
such as rearrangement of objects on a table. To address these demanding chal-
lenges, we introduce new synthetic and real-world datasets that replicate these
industrial and household scenarios. We also propose a novel paradigm for joint
segmentation and tracking in discrete frames along with a transformer module
that facilitates efficient inter-frame communication. The experiments we conduct
show that our approach significantly outperforms recent methods. For additional
results and videos, please visit website. Code and dataset will be released.

Keywords: Unseen Object Instance Segmentation, Unsupervised Multi Object
Tracking, Zero-shot, Discrete Frames

1 Introduction

Figure 1: A densely packed shelf environ-
ment. The shelf holds objects from a wide
array of categories. During the stowing pro-
cess, a human operator may obscure the cam-
era’s view and rearrange the objects within
the bin. The robot’s task is to pick a specific
object as directed by the given order index of
the object’s placement in the bin.

Object segmentation and tracking, a key percep-
tion task for robotic picking, is particularly impor-
tant in warehouse environments, where millions of
commodity items are organized daily on warehouse
shelves for storage and categorization, as shown in
Figure 1. Future intelligent robots must acquire
strong perception capabilities to help human workers
stow and fetch items from these shelves. These ca-
pabilities include detecting objects with diverse ge-
ometries in cluttered scenes and tracking them while
other items are being added or picked up. Despite
considerable research progress in this area, it re-
mains notoriously difficult to detect and track un-
known objects in highly cluttered environments.

Researchers commonly address this task using a
segment-then-track paradigm [1, 2], which executes
the two procedures sequentially. During segmentation, each frame is handled as an independent
image on which advanced unseen object instance segmentation methods are applied [3, 4, 5, 6]. The
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subsequent tracking step leverages varied techniques [7, 8, 9, 10] to group masks of the same object
across frames. However, this approach has inherent limitations. Segmentation methods struggle to
resolve ambiguities because they cannot utilize information from other frames to enhance segmenta-
tion within each frame. Tracking lacks alternatives when segmentation fails, since its success heavily
relies on consistent object appearance or location across consecutive frames. These drawbacks limit
the paradigm’s effectiveness when there are crowded scenes and discrete frames.

Our task resembles video instance segmentation (VIS), which involves segmenting and tracking
objects in videos, with the leaderboard predominantly occupied by simultaneous segmenting and
tracking methods [11, 12, 13]. This similarity suggests the potential to adopt their methods to
realize an end-to-end solution in our task. However, their methods, mainly designed for videos
with continuous frames, display subpar performance when faced with significant object movements
between frames, a prominent challenge in our task.

We therefore introduce STOW, Discrete-Frame Segmentation and Tracking of Unseen Objects for
Warehouse Picking Robots, a new framework for addressing challenges in our context. STOW con-
sists of a new paradigm to jointly perform segmentation and tracking and a novel module, called
the multi-frame attention layer, that facilitates efficient inter-frame communication. It succeeds in
simultaneously achieving high segmentation accuracy, high tracking accuracy, and high robust-
ness to the sim-to-real gap. Remarkably, even when trained exclusively on synthetic images, our
method significantly surpasses baseline on real data and live robot experiments.

In summary, our main contributions are: (1) Task formulation for unseen object instance segmen-
tation and tracking in discrete frames as well as realistic synthetic data generation and real dataset
data collection and manual labeling for bins in the shelf and tabletop environments, facilitating re-
search in this domain (2) A new paradigm to perform joint segmentation and tracking in discrete
frames, along with a new module, i.e., multi-frame attention, that efficiently communicates infor-
mation across frames (3) Experiments conducted on real data and on a working robot to verify our
network’s superior performance

2 Related Works
Unseen object instance segmentation. In computer vision, traditional object instance segmentation
requires prior knowledge about the objects. In contrast, our work targets potentially unseen objects
without such knowledge. Previous efforts, such as UCN [4], UOIS [3], and MF [5], addressed
unseen object discovery in single-frame images using varied strategies, e.g., RGB-D feature embed-
dings and metric learning loss. A recent model, SAM [6], also demonstrates robust segmentation
across a wide variety of objects by training on a large amount of data. While these works focus on
segmenting and tracking in single-frame images, our research extends it to multiple frames.

Video object segmentation. Like the video object segmentation task [14, 15, 9], we track unseen
objects in the test set. However, the VOS task assumes accessibility to an object’s mask in one
frame, which is not applicable in our task. For video object instance segmentation, previous works
adhere to the tracking by detection paradigm, e.g., [16] and similarly [17, 18, 19], and often address
the problem of multi-object tracking (MOT), i.e., the estimation of bounding boxes and identities of
objects in consecutive RGB image streams. MOT tasks usually focus on tasks in traffic scenes and
objects like people [20, 21] and vehicles.

Video Instance Segmentation. Our task diverges from existing VIS (Video Instance Segmentation)
datasets [22, 23] in two main aspects. First, while VIS employs a closed-set category approach for
detection/segmentation, our open-set problem adds complexity by recognizing instances regardless
of class, as opposed to relying on learned patterns. Second, unlike VIS’s focus on continuous,
limited-changes video sequences, our dataset emphasizes tracking amid drastic changes between
frames, making it ill-suited for benchmarking with VIS datasets.

Unsupervised multi-object tracking. The unsupervised video instance segmentation task intro-
duced in DAVIS 2019 [24] bears similarity to Video Instance Segmentation (VIS), with a focus on
open-set category objects akin to our task. However, our approach diverges in two key aspects:
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(1) despite targeting unseen objects, DAVIS 2019 predominantly includes humans, vehicles, and
animals, contrasting with the warehouse objects our study emphasizes, and (2) akin to VIS, it neces-
sitates objects to exhibit continuous movement, thereby avoiding an ill-defined task.

Image co-segmentation. Our task is similar to object co-segmentation [25], which extracts recur-
ring objects from an image pair or a set of images. While the goal of co-segmentation is to identify
shared objects in a scene, we focus on instance segmentation and do not allow similar objects of the
same class. Distinguishing between an object instance and an object class is a crucial requirement
for industrial warehouses.

Temporal Attention. In temporal attention, our multi-frame method aligns with but uniquely stands
out from prior works. Context R-CNN integrates per-RoI features from various frames to enhance
current detections. Unlike its static approach and two-phase method, we embed temporal attention
within each block, updating all frame object queries post each temporal attention. Meanwhile,
[26] proposed module called Alignment-guided Attention (ATA) which apply temporal attention on
patches with similar features through bipartite matching. Unlike ATA’s 1D fixed-size patch focus,
our technique employs all object queries across all images, capturing varied masks and accessing
broader information.

3 Problem Formulation

Figure 2: Task Illustration: The left col-
umn presents the images inputted into
our network, while the right column
showcases the expected segmentation
and tracking outcomes. Identical colors
indicate the same object.

In this work, we introduce the novel task of segmenting
and tracking unseen objects given a series of input dis-
crete image frames. Though challenging, this task has
broad applications in the field of robotics and is partic-
ularly useful in warehouse environments, such as that
shown in Figure 1. Scenes involving warehouse shelves
can be exceedingly packed and cluttered, consisting of a
vast assortment of items, including some that have not
been previously encountered. Moreover, there may be
temporal gaps between successive snapshots of the scene,
during which human workers may place new objects,
robots may retrieve existing items, and some objects may
undergo changes in pose.

Formally, we formulate the problem as follows. The input
to the task is a sequence of images I = {I1, I2, · · · , IT |
It ∈ RH×W×CI}, where H and W are the height and
width of the images, respectively, and CI represents the
number of channels, i.e., 3 for RGB images and 4 for RGB-D inputs. The task involves detecting,
segmenting, and tracking KI object instances that appear in these input images, where KI may
not be known beforehand. The output of the task is a set of binary object instance masks, Mt =
{M1

t ,M
2
t , · · · ,M

KI
t | M i

t ∈ {0, 1}H×W , i = 1, 2, · · · ,KI}, corresponding to each input image
It ∈ I. Figure 2 shows the problem setting under consideration.

4 Method
Our system (Figure 3) uses query-based transformer architectures [27, 13] for object detection and
segmentation, which we describe in Sec. 4.1. To enable the tracking of object instances across dis-
crete image frames, we introduce the learning of additional object embeddings for tracking (Sec. 4.3)
as well as a multi-frame attention layer to distinguish between identical or distinct object instances
(Sec. 4.2). Sec. 4.4 discusses training specifics and loss functions.

4.1 Backbone Architecture

Following [27, 13], the backbone of our network consists of three components: (1) a ResNet-based
image encoder, (2) a transformer-based object query decoder, and (3) several prediction heads tasked
with determining object properties, such as the likelihood of object existence and object masks.
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Figure 3: As outlined by a dashed rectangle, our transformer decoder ingests dense feature maps
converted from input frames and produces object tokens for each image. These tokens predict con-
fidence scores, mask embeddings for mask prediction, and object embeddings for association. We
also introduce a novel ”multi-frame attention” layer, which attends to object queries from all frames.

4.2 Multi-Frame Attention

ResNet-based image encoder. We use ResNet-50 [28] to transform every input frame It ∈
RH×W×CI (t ∈ 1, 2, . . . , T ) into a dense low-resolution feature map Ft ∈ RH

S ×W
S ×CF . Here, CF

denotes the channel dimension of the output dense feature map, while S = 32 is the down-sampling
ratio used in this work.

Transformer-based object query decoder. We employ a DETR-like transformer decoder [29] that
takes the produced dense feature map Ft as input and learns to decode a set of Nq object tokens
{q1

t ,q
2
t , · · · ,q

Nq

t } ∈ RCq as the outputs. Each object token contains the latent information neces-
sary for tasks such as classification estimation, mask prediction, and tracking in discrete frames. Our
transformer decoder consists of L = 10 transformer blocks; each block contains one cross-attention
layer, one self-attention layer, one feed-forward layer, and one novel multi-frame attention layer that
correlates object features across different image frames (Sec. 4.2).

Prediction head for object masks. To get a per-pixel segmentation mask M i
t ∈ {0, 1}H×W for

each object token qi
t, we first use a two-layer multilayer perceptron (MLP), which maps an input

object token qit to a mask embedding eit ∈ RCe ; we then employ a multi-scale deformable attention
transformer module (MSDeformAttn) [30] to convert the dense feature map Ft to a pixel embedding
map Pt ∈ RH

4 ×W
4 ×Ce . Here, Ce denotes the channel dimensions used for the mask and pixel

embeddings. We calculate the dot product between the object embedding eit and the pixel embedding
Pt in order to obtain the mask prediction M̂ i

t at a reduced resolution of H
4 × W

4 . Subsequently, a
bilinear upsampling operator is applied to map M̂ i

t back to the original image resolution for the final
mask prediction M i

t ∈ {0, 1}H×W .

Prediction head for object existence scores. Taking the object token qi
t as input, we leverage a

simple linear layer to estimate an object existence likelihood score sit ∈ [0, 1]. In the context of
unseen object instance segmentation, we are not concerned with precise target object categories, nor
do we have access to this knowledge. This characteristic simplifies the task into a binary classifica-
tion, the objective of which is to estimate the confidence score of whether each segment corresponds
appropriately to an object.

4.3 Object Embedding for Tracking

In addition to the predicted object existence score and its segmentation mask in each frame, we
add a new prediction head for object tracking embedding to enable the association of object tokens
belonging to the same object from different input frames. Specifically, we employ a two-layer MLP
to learn a mapping from the input object query qi

t to another object embedding used for tracking
rit ∈ RCr . Here, Cr represents the number of channels of the object embedding vector.

During the inference phase, we implement an associator to group object tokens with similar object
embeddings. Specifically, we sequentially traverse each frame in the sequence. For each frame,
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we retain only those object tokens qi whose confidence scores surpass a predefined threshold δscore.
For each input sequence, we maintain a trajectory bank, T , that encompasses the trajectories of all
observed objects. Each trajectory in the trajectory bank T i ∈ T consists of object tokens qi that are
considered to belong to the object i. Subsequently, we compute the similarity score between these
selected object tokens and the previous trajectory using the following equation:

Sim(qi, T j) = max(R(qi) ·R(qj
k)), for qj

k ∈ T j . (1)

In this equation, R is the function that transforms the object token qi into the object embedding ri.

After this step, we use the Hungarian algorithm [31] to search for an optimal bipartite matching
ϱ̂ from all possible bipartite matchings P that can maximize the overall similarity between object
tokens q and the trajectory bank T :

ϱ̂ = argmaxϱ∈P

Nq∑
i

Sim(qi, T ϱ(i)). (2)

We initialize the trajectory bank, T , with an adequate number of false alarm tokens, TFA, each
of which exhibits a constant similarity δmatch to all object tokens. The hyper-parameter δmatch can
also be interpreted as a false alarm threshold in matching. Any predicted object tokens assigned to
tokens from TFA are assumed not to match any existing trajectory; thus, a new trajectory is opened
for them.

Our tracking method also enables the possibility of handling multiple identical objects in the same
scene. Specifically, object tokens corresponding to identical objects are likely to be recognized due
to the expectation that object embeddings are near to them.

The previous modules we introduced work independently for each frame without any cross-frame
information exchange. To facilitate efficient communication between frames, we introduce a new
component, the multi-frame attention layer, into the transformer decoder.

The multi-frame attention layer is an extension of the self-attention layer, which operates on object
queries from a single frame; it attends to object queries from all accessible frames. To illustrate, we
denote the intermediate object queries after each feed-forward network as Xt

l , where l and t indicate
the index of transformer blocks and frames, respectively. A standard self-attention layer (with a
residual path) computes the following (we omit the normalization term

√
dk here for simplicity):

SelfAttn(Xt
l) = softmax(fQ(Xt

l) · fK(Xt
l)

T )fV (Xt
l) + Xt

l . (3)

In contrast, our multi-frame attention layer computes:

MultiFrameAttn(Xt
l) = softmax(fQ(Xt

l) · fK(Xl)
T )fV (Xl) + Xt

l . (4)

Here, Xl represents the set of object queries from all frames Xl = {Xt
l , for t = 1, 2, . . . , T}. The

functions fQ, fK , and fV are linear transformations that convert Xl or Xt
l into a C-dim space.

The multi-frame attention layer is positioned at the end of each transformer decoder block, which
is repeated L times in our network. Therefore, output object queries can incorporate the dense
feature map of the current frame to update their prediction after communicating with object queries
from other frames. Furthermore, the multi-frame attention layer is computationally efficient since it
attends only to object queries from all frames, typically around 100 queries per frame vs the 1200
queries per frame used in Mask2Former-video [12] for images with size 640× 480. Such efficiency
lets it process long-term input sequences and large-scale images.

4.4 Training and Losses
Our model adopts the same loss function as utilized in Mask2Former [27] for classification and
mask prediction. This includes the softmax cross-entropy loss, denoted as Lclass, for classification,
along with binary cross-entropy loss, denoted as Lce, and the Dice loss, denoted as Ldice, for mask
prediction. To address tracking loss, we employ the contrastive loss Lcontra used in DCN [32] along
with the softmax loss (also referred to as the n-pair loss or InfoNCE loss) from CLIP [33]. For an
object token qoi

t̂
, object tokens paired with the same object oi in different frames qoit , t ̸= t̂ are treated
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as positive samples and pushed closer, while tokens assigned to different objects or backgrounds are
treated as negative pairs and pushed away. See the supplementary material for more details.

Consistent with the approach in DETR [29] and Mask2Former [27], we leverage the Hungarian
algorithm [31] to establish a bipartite matching between the predicted object tokens and ground
truth that minimizes the overall loss. Notably, we exclude the tracking loss from the Hungarian
algorithm’s computation given that Lsoftmax is influenced by the object tokens contributing to this
loss. The final loss is Ltotal = λclassLclass + λceLce + λdiceLdice + λcontraLcontra + λsoftmaxLsoftmax.

5 Experiments
We assess our methodology in two typical environments—bin in a shelf and tabletop—both of which
are representative settings in a multitude of warehouse and domestic applications. For each setting,
we generate corresponding synthetic data for the training phase and collect and annotate real-world
data for evaluation. We also integrate our approach into a bin-picking robotic system for practical
experimentation.

We train our models separately on distinct synthetic datasets for the shelf and table environments.
Each run exclusively uses one dataset and is evaluated against the corresponding real-world test set.
Inference takes around 0.4 seconds for a 15-frame sequence on an RTX 2080Ti. Additional training
details are in the supplementary material.

5.1 Dataset and Evaluation
Synthetic data. We construct mesh models for shelf and table bins using textures from the CC0
dataset [34], and object meshes from the Google Scanned dataset [35], consisting of over 1000
models. Excluding 70 with isolated parts, we utilize 900 objects for the training set and 100 for
validation. Objects are randomly rotated and positioned to avoid collision, with no heavy occlusion
in the shelf environment. In total, we generate around 10,000 sequences for the shelf, each with at
least 2 packed frames, and 2,000 sequences for the tabletop, each containing 15 frames.
Real-world data. For real-world scenarios, we collect and manually label 44 sequences with 220
images for the shelf scenario and 20 sequences with 280 images for the tabletop scenario. Our
dataset includes over 150 diverse objects. These range from relatively simple objects, such as boxes
and bottles, to more complex ones, like transparent water bottles enclosed in plastic bags. In each
sequence, we progressively add objects until either the bin is full or around 10 objects are placed on
the table. Object rearrangement could occur between any two frames, leading to significant changes
in object location and appearance.
Evaluation metrics. We adopt the evaluation method of the VIS challenge [22], a modified version
of the MS-COCO metric [36]. In video instance segmentation, each object is represented by a series
of masks, and the Intersection over Union (IoU) is calculated at the level of these mask sequences.
To construct the Precision-Recall (PR) curve, the confidence threshold is systematically varied, with
each threshold yielding a distinct data point on the curve. The area under the PR curve provides the
Average Precision (AP).

In the context of this study, if not further specified, AP@0.5 denotes the average precision at an IoU
threshold of 0.5. Similarly, AP@all represents the mean AP calculated over multiple IoU thresholds,
specifically from 50% to 95% in 5% increments.

5.2 Results and Analysis
Baseline methods. We benchmark our approach against three state-of-the-art Video Instance Seg-
mentation (VIS) methods: MinVIS [13], Mask2Former-video [12], and VITA [11]. To ensure an
equitable comparison, all methods utilize ResNet-50 as the backbone, and the hyperparameters (such
as batch size, maximum iterations, and the number of sampled frames) are standardized to match
ours. Hence, all methods are trained on an identical number of images.

Qualitative results. As depicted in Table 1, our method notably outperforms existing VIS tech-
niques, yielding an approximate 10% improvement in the shelf environment and a 20% increase
in the table environment, even without using the multi-frame attention layer. Interestingly, MinVIS

6



Method Shelf Tabletop
AP@all AP@0.5 AP@all AP@0.5

MinVIS 6.3 21.2 0.7 0.0
Mask2Former Video 35.0 66.1 27.7 56.7

VITA 42.7 70.1 26.6 55.0
STOW (Ours) 55.6 81.3 49.7 75.4

Table 1: Comparison between our method and leading video instance segmentation methods. Net-
works are trained on synthetic data and tested on real, unseen data. All use ResNet-50[28] and train
on an identical number of images.

Figure 4: Visualized results for the shelf environment. Masks with the same color and index are
associated and predicted as the same object by the network.

exhibits subpar performance in our task. We speculate that this is due to its reliance on the proximity
between object tokens as a measure of similarity; this method presupposes that the changes between
frames are minimal and that objects maintain similar locations and appearances. However, these
conditions do not consistently hold in our task, potentially explaining the subpar performance.

Quantative results. We also show visualization results on a subset of real test data in Figure 4
and Figure 5. Our approach adeptly handles frame changes amid various types of noise. Despite
significant movement and rotation between frames, the network successfully segments and tracks a
broad array of object categories. It efficiently segments and continues tracking any new objects that
are introduced. Figure 5 also demonstrates the method’s robustness against backgrounds: it avoids
predicting them as objects even though walls are not included in the training set. Supplementary
materials contain additional results that contrast our approach with other methods.

5.3 Ablation Study
Frame attention. We evaluate the performance of our method with and without the cross-frame
attention module on both the shelf and table scenes using ResNet-50 and Swin-T backbones. The
cross-frame attention module yields consistent performance improvements across all configurations,
as shown in Table 2.

multi
frame

shelf tabletop
AP@all AP@0.5 AP@all AP@0.5

- 51.8 78.7 44.4 68.5
✓ 55.6 81.3 49.7 75.4

Table 2: With and without the multi-frame at-
tention layer. The left column denotes whether
we incorporate multi-frame attention in this ex-
periement. All other hyper-parameters remain the
same. Use of the frame attention layer boosts both
shelf and tabletop environment performance by
∼5%.

Sim2Real gap. We evaluate our methods on
the synthetic validation set, which contains ob-
jects not included in the training set, and com-
pare it to the number we tested on the real test
set. Results, shown in Table 3, reveal that other
methods get results that are relatively to ours for
the synthetic set, but their performance drops
dramatically when we evaluate on the test set.
This implies that they have difficulties solving
the sim2real gap.

5.4 Real Robot Applications
We integrated our visual perception technique
into an autonomous shelf-picking system [37]. The system’s multi-component software architecture
is managed by a state machine. The system setup uses a UR16e industrial robot situated in front
of an industrial warehouse shelf filled with objects. Within the robotics community, it’s standard to
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Figure 5: Visualized results for the table environment. Masks with the same color and index are
associated and predicted as the same object by the network.

address perception problems by combining unseen instance segmentation methods with other estab-
lished techniques, as seen in [1],[38], [39], [40]. Other than VITA [11] in Table 1, we also combine
UCN [4], a staple in unseen instance segmentation, with SIFT [7], a renowned keypoint extraction
method, reflecting the conventional solution for this challenge. The center of the mask is used as the
grasping point for suction cap. Our evaluation protocol employs a fixed set of diverse items, stowed
at specific locations and orientations within the bins, to ensure reproducibility and comparability
of results since performance can fluctuate with different item configurations and inherent system
stochasticity.

method synthetic real
AP@all AP@0.5 AP@all AP@0.5

MinVIS 0.3 2.6 0.7 0.0
M2F-V 71.6 83.7 27.7 56.7
VITA 69.4 81.9 26.6 55.0
STOW (Ours) 74.1 89.3 49.7 75.4

Table 3: Ablation study on solving the sim2real
gap. After training on synthetic tabletop training
set, we separately evaluate each method on a syn-
thetic tabletop validation set and a real tabletop
test set; note that objects in the synthetic valida-
tion set are not included in the synthetic training
set.

We testing each method with 82 trials across
different levels of difficulty, involving over 100
objects. For UCN [4]+SIFT [7], the picking
success rates stand at 40.2%. Using VITA [11],
it is 46.3%. With our STOW method, this rate
increase to 74.4%.

6 Limitations
Our method, while effective, has limitations
in handling highly cluttered environments and
complex objects. False positives and negatives
occur in object detection, especially in intricate
settings. The segmentation process can result
in over- or under-segmentation due to complex
object boundaries and textures. In object tracking, we sporadically encounter mistracking incidents
and occasional failures to distinguish between multiple objects. Refer to the supplementary material
for detailed analyses and examples of these limitations.

7 Conclusion
In this paper, we introduce the task of segmenting and tracking unseen objects in discrete frames
which is widely used in robotics tasks but under investigation. We formulated the problem and
collected both synthetic and real datasets. We also propose a novel paradigm for joint segmentation
and tracking, incorporating multi-frame attention for better inter-frame communication. Even when
trained solely on synthetic data, our method adeptly handles clustering and large movements in
real-world sequences. Our innovative approach excels in segmenting and tracking within both shelf
and tabletop settings, surpassing state-of-the-art techniques with a 10%-20% improvement in AP in
real-world scenarios and more than 20% success rate in robot experiments.
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A Dataset Detail

A.1 Synthetic Data

We built a synthetic dataset using high-quality household models from the GoogleScanned
dataset[35] with two typical settings: a) Shelf and b) Tabletop.

Shelf environment. In shelf environments or other bin-based object arrangements, the objects are
akin to books and are constrained to a shortest-dimension-faces-outward orientation. This scheme
ensures that each object is guaranteed to have at least one visible face, but it also leads to significant
occlusion among objects. The camera is positioned at the front of the bin to capture images of the
scene, subject to random perturbations in the location that inject noise into the data.

Given that each bin contains a maximum of 3 to 5 objects, segmentation and tracking tasks become
trivial if the scene contains fewer than 3 objects. To address this issue, image frames are generated
only when the bin is nearly full. We leverage approximately 900 objects sourced from the Google
Scanned dataset, resulting in a training set of approximately 9000 image pairs. We use the remaining
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Figure 6: Some objects used during the evaluation. Objects vary greatly in shape and physical
properties, with some being partially transparent or wrapped in a bag.

100 objects to generate approximately 1000 image pairs for the test set. Each image pair may exhibit
the introduction of a new object in addition to existing objects undergoing a flipping operation or
relocation with a certain probability.

Tabletop environments. Generating datasets of objects placed on a table requires different set-
tings given the absence of walls and typically larger surface area than in a bin-based object ar-
rangements. As a result, we adopt an alternative strategy for dataset generation. Specifically, each
sequence consists of 15 images, with the first 10 images incrementally introducing new objects while
shuffling existing objects between frames. No new objects are added in the final 5 frames, though the
shuffling of existing objects persists. Due to the random placement of objects on the table, instances
of full occlusion may occur in certain frames and subsequently reappear in subsequent frames.

To construct our training and testing datasets, we utilize 900 objects sourced from the Google
Scanned dataset, producing 2000 sequences for the training set, with the remaining 100 objects
used to generate 500 sequences for the test set.

A.2 Real Data

As we did for the synthetic evaluation, we split the evaluation into shelf and tabletop environments,
the most common real-world scenarios encountered. To evaluate our method on challenging real-
world scenarios, we need a large variety of objects; Figure 6 depicts some of the objects used during
the tablefop evaluation. For shelf environments, we use an Azure Kinect RGB-D sensor, and for
tabletop ones we use an Intel Realsense D455 camera. Camera distance ranges from 1 to 1.5 meters.
Each time an object is placed on the table or in a new bin, a new image is captured. Objects can
be rearranged to maximize space utilization as they are placed in the scene. After all the objects
are placed in the scene, we also displace the objects for a more refined evaluation. Camera images
are manually labeled using the interactive segmentation of the object tracking framework XMem
[9]. We collected and annotated more than 280 images with more than 150 different objects for the
tabletop scenario and 220 images for the shelf scenario.

B Training and Inference Details

B.1 Training Details

We set the maximum number of iterations to 16k using an initial learning rate of 1e-5, which was
then dropped by 0.1 after 14k iterations. The number of classes is set to 1 since we are aiming
to handle unseen objects. For the shelf dataset, we trained our network with a batch size of 32 and
leveraged 2 frames from each sequence; for the table dataset, we set the batch size to 8 and randomly
selected 4 frames from each sequence. To enhance the diversity of our dataset, we applied random
color jittering and rotation to the input before feeding it to the network. The training process was
executed on a single NVIDIA A-40 GPU and took approximately 13 hours.
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During the training phase, we excluded the initial predicted object embedding, which was directly
generated from the query feature. Additionally, when handling negative queries, we adopted a more
selective approach by considering only queries whose IoU with any ground truth was lower than 0.6
rather than regarding all unmatched queries as negatives. This was motivated by the lack of clarity
regarding which patches truly represent objects in unseen object settings (in contrast to close-set
settings).

B.2 Associator

We show below an example of code demonstrating how to associate object tokens from a new frame
with the trajectory bank built in previous frames. In implementation, we set σscore = 0.6 and
σmatch = 0.2 (similarity ranged in [−1, 1]).

def associate_one_frame(traj_bank, object_tokens_cur_frame, delta_score,
delta_track):
object_tokens = [x for x in queries_this_frame if x[’score’]>

delta_score]
num_trackers = len(traj_bank)
Nq = len(object_tokens)
similarity = torch.ones(num_trackers+Nq, num_pred)*delta_track

# Extract object embedding from current frame’s object tokens
obj_embed = torch.stack([x[’obj_embed’] for x in object_tokens])

# Compute similarity between object embedding of trajectory and
current frame’s object tokens

for traj_idx, traj in enumerate(traj_bank):
traj_obj_embed = torch.stack([x[’obj_embed’] for x in traj])
sim = traj_obj_embed @ obj_embed
similarity[traj_idx] = sim.max(dim=0)[0]

# Perform Hungarian matching to find bipartite matching which have
hightest similarity

traj_indices, obj_token_indices = hungarian_matching(-similarity)

# Update tracker
for traj_idx, token_idx in zip(traj_indices, obj_token_indices):

if traj_idx > num_trackers:
# if it is not matched with any existing trajectory
traj_bank.append([object_tokens[token_idx]])

else:
traj_bank[traj_idx].append(object_tokens[token_idx])

return traj_bank

B.3 Loss

We keep the loss function that Mask2Former used for classification and mask prediction, which
means binary cross entropy and dice loss for mask prediction and softmax cross entropy loss for
classification.

For the object embedding head, we also use two losses: contrastive loss and softmax loss (or n-pair
loss and InfoNCE loss).
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Contrastive Loss. We use contrastive loss modified from DCN[41] with hard-negative scaling
from [32].

Lmatches(Q) =
1

Nmatches

∑
Nmatches

D(qoit1 , q
oi
t2)

2 (5)

Lnon-matches(Q) =
1

Nhard-neg

∑
Nnon-matches

(0,M −D(qoit1 , q
oj
t2 )i ̸=j) (6)

L(Q) =Lmatches(Q) + Lnon-matches(Q), (7)

where
Nhard-negatives =

∑
Nnon-matches

1(M −D(qoit1 , q
oi
t2) > 0). (8)

Here, Q denotes all object tokens from images, and qoit denotes the object tokens assigned to object
oi in frame t. M is the margin parameter used to ensure that non-matched pairs have a distance of
at least M apart. The distance function D is the cosine distance function, as in UCN [4], which is
defined as:

D(qi, qj) =
1

2
(1− ri · rj). (9)

Here, ri = f(qi)
|f(qi)| is the object embedding of object token i, which is computed by first forwarding

the query to a linear layer f and then normalizing it to a unit vector. To expedite the training process,
we selectively incorporate a subset of negative queries to contribute to the contrastive loss, thereby
enhancing its efficiency.

An illustration of the contrastive loss is shown in Figure 7. Assuming that three frames are sampled
from a sequence during training, the contrastive loss will be computed between all frames. In the
figure, matched pairs are denoted by dark gray and apply loss according to Equation 5, while non-
matched pairs are denoted by light gray and apply loss according to Equation 6.

Softmax Loss We also modified the N-pair/InfoNCE loss used in CLIP[33].

Lsoftmax(t) =−
∑

k∈Q+

∑
i∈O(t)

exp(rkt · rit · eτ )∑
j∈Qt

exp(rkt · rit · eτ )
(10)

Lsoftmax =
1

T

∑
t∈1,··· ,T

Lsoftmax(t), (11)

where Q+ denotes all positive queries, O(t) denotes all objects in frame t, and Qt denotes all queries
in frame t. This is also shown in Fig. 7-b, where the label of each row corresponds to the index of
the query assigned to the same object. If there are n identical objects in the same frame, the softmax
loss should be extended by copying all queries in this frame n times, each time keeping only one
query for that object. This allows queries containing the same object to be converted into multiple
query sets, each consisting of only the target object.

Thus, the final tracking loss can be represented as

Ltrack = λcontraLcontra + λsoftmaxLsoftmax. (12)

C Detailed Analysis

C.1 Sim-to-real Gap

Results are shown in Table 4. The experiment is conducted in the tabletop environment with the
same setting as in main manuscript. We see the following from

(1) The Image AP results from both the synthetic validation set and real test set demonstrate
that MinVIS outperforms Mask2Former Video and VITA. This indicates that the approach of
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Figure 7: Tracking loss. In this example, three frames are sampled from a sequence, denoted with
different border colors. Object tokens that match the objects in the images are represented by a
blue square, an orange triangle, and a red circle. The hexagon denotes background object tokens
that do not match to any objects. (a) the contrastive loss is computed between all frames, where
matched pairs (dark gray) apply loss using Equation 5, non-matched pairs (white) apply loss using
Equation 6, and ignored pairs (light gray) do not contribute to the loss. (b) the n-pair/InfoNCE loss
is computed over all positive queries and queries from each frame. Equivalent to using a softmax
cross-entropy while setting the label of the index of queries assigned to the same object.

method syn., video AP syn., image AP real, video AP real, image AP
AP@all AP@0.5 AP@all AP@0.5 AP@all AP@0.5 AP@all AP@0.5

UCN [4] - - 67.3 82.9 - - 52.4 86.6
MinVIS [13] 0.3 2.6 82.4 91.8 0.7 0.0 54.5 72.7

Mask2Former Video [12] 71.6 83.7 72.8 82.6 27.7 56.7 38.9 57.3
VITA [11] 69.4 81.9 70.6 80.2 26.6 55.0 41.4 63.0

Ours 74.1 89.3 87.6 95.3 49.7 75.4 80.1 97.6

Table 4: Evaluation of SOTA VIS methods on the unseen object instance segmentation task. ”syn”
indicates evaluation on a synthetic tabletop dataset; ”real” denotes evaluation on a real-world table-
top dataset. The evaluation metrics include ”video” and ”image” for assessing performance in dif-
ferent contexts (as described in subsection B.1). We see that MinVIS exhibits superior performance
in detection, while Mask2Former Video and VITA excel in matching. Remarkably, our proposed
method harnesses the strengths of both approaches, surpassing all evaluated methods in overall per-
formance.

Mask2Former Video and VITA, which utilizes a single object token to predict object masks across
an entire sequence, is less effective than using distinct object tokens for each frame. Consequently,
it is difficult for object tokens to efficiently manage discrete frames with considerable movement
and appearance variations.

(2) A significant decline is apparent in the Image AP and Video AP results on the real test set for
MinVIS. This suggests a suboptimal tracking performance when applying object tokens directly.

(3) Notably, our method experiences a less dramatic drop in performance, as evidenced by the Video
AP results on both the synthetic validation set and the real test set. This suggests that our method is
more adept at managing the simulation-to-reality gap.

D Failure Cases

The efficacy of our method is sometimes compromised in scenarios characterized by crowded scenes
or significant alterations in object appearance, as illustrated in Figure 10. We categorize these short-
comings into two principal groups: segmentation failures and tracking failures.

Segmentation failures arise from issues such as:

• Under-segmentation: This occurs when objects have similar colors or lack clear borders,
leading to a blending of distinct entities.

• Over-segmentation: In this case, a single object is erroneously identified as multiple entities
due to recognition failures.
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Figure 8: Results from different methods on the tabletop dataset. Methods ordered from top to
bottom: MinVIS, Mask2Former-Video, VITA, and Ours (STOW).

• Detection failure: Here, an object is entirely missed, leading to its absence in the segmented
output.

Tracking failures, on the other hand, include:

• Mismatch: This involves incorrect associations between objects across frames or confusion
arising from similar-looking distractors.

• Mistrack: In these instances, the algorithm fails to consistently identify the same object,
resulting in tracking inconsistencies.

In both categories of failure, the complexity of scene compositions and variations in object appear-
ances are pivotal factors that undermine the performance of our tracking method. We are devoted
to exploring advanced strategies to mitigate these limitations, aiming for enhanced robustness in
diverse and dynamic environments.
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Figure 9: Results from different methods on the bin dataset. Methods ordered from top to bottom:
MinVIS, Mask2Former-Video, VITA, and Ours (STOW).

Figure 10: Failure Cases Illustrated. In the Tabletop settings (top 2 rows), we observe under-
segmentation (top left), over-segmentation (top right), mismatch (bottom left), and mistrack (bot-
tom right). In the Shelf settings (bottom two rows), the failures include a combination of under-
segmentation and failure to detect new objects (top left), failure to track and mismatch (top right),
failure to detect (bottom left), and failure to segment (bottom right).
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